Topics in the November 2014 Exam Paper for CHEM1002

Click on the links for resources on each topic.

2014-N-2:

- Strong Acids and Bases
- Weak Acids and Bases
- Calculations Involving pKa

2014-N-3:

- Metal Complexes
- Coordination Chemistry
- Entropy

2014-N-4:

- Metal Complexes
- Coordination Chemistry
- Kinetics

2014-N-5:

Crystal Structures

2014-N-6:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams

2014-N-7:

Solubility Equilibrium

2014-N-8:

- Alkenes
- Alcohols
- Organic Halogen Compounds
- Carboxylic Acids and Derivatives
- Aldehydes and Ketones

2014-N-9:

• Stereochemistry

2014-N-10:

- Representations of Molecular Structure
- Stereochemistry
- Carboxylic Acids and Derivatives

2014-N-11:

• Carboxylic Acids and Derivatives

2014-N-12:

- Synthetic Strategies
- Stereochemistry

November 2014

Confidential

SEAT NUMBER:
STUDENT ID:
SURNAME:
GIVEN NAMES:

CHEM1002 Fundamentals of Chemistry 1B

Final Examination Semester 2, 2014

Time Allowed: Three hours + 10 minutes reading time

This examination paper consists of 20 pages

INSTRUCTIONS TO CANDIDATES

- 1. This is a closed book exam.
- 2. A simple calculator (programmable versions and PDA's not allowed) may be taken into the exam room.

Make	Model

- 3. The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- The paper comprises 28 multiple choice questions and 11 pages of short answer questions. ANSWER ALL QUESTIONS.
- 5. Follow the instructions on page 2 to record your answers to the multiple choice questions. Use a dark lead pencil so that you can erase errors made on the computer sheet.
- 6. Answer all short answer questions in the spaces provided on this question paper. Credit may not be given where there is insufficient evidence of the working required to obtain the solution.
- 7. Take care to write legibly. Write your final answers in ink, not pencil.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.

		Marks			
Page(s)	Max	Gained		Marker	
2-8	28			мео	
20				moq	
9	8				
10	8				
11	6				
12	2				
13	6				
14	7				
15	10				
16	8				
17	8				
18	3				
19	6				
Total	100				
Check	Total				

• Above what concentration of H_3O^+ is a solution considered to be acidic at 25 °C?	Marks 3
Answer:	-
At 95 °C the auto ionisation constant of water, K_w , is 45.7×10^{-14} . What is the pH of a neutral solution at 95 °C?	-
pH =	
• Calculate the pH of a 0.020 M solution of lactic acid, $HC_3H_5O_3$, at 25 °C. The p K_a of lactic acid is 3.86.	5
pH =	-
A 1.0 L solution of 0.020 M lactic acid is added to 1.0 L of 0.020 M sodium hydroxide solution. Write the ionic equation for the reaction that occurs.	
Is the resulting solution acidic, basic or neutral? Give a reason for your answer.	-
	1

Page Total:

•	Transition metals are often found in coordination complexes such as [NiCl ₄] ²⁻ . What is a complex?	Mark 8
	How does the bonding in the complex $[NiCl_4]^{2-}$ differ from the bonding in CCl_4 ?	
	What is a chelate complex?	
	Why is a chelate complex generally more stable than a comparable complex without chelate ligands?	

•	An aqueous solution of iron(III) nitrate is pale yellow/brown. Upon addition of three mole equivalents of potassium thiocyanate (KSCN) a bright red colour develops. Draw the metal complex responsible for the red colour, including any stereoisomers.	Marks 2
•	The reaction order for a chemical reaction is given by the sum of the powers in the rate law. Why is the reaction order usually given by a small positive integer, <i>i.e.</i> 2 or less?	4
	Are zero order reactions possible? Explain your answer using examples if possible.	-

- Marks 2
- The cubic form of boron nitride (borazon) is the second-hardest material after diamond and it crystallizes with the structure shown below. The large spheres represent nitrogen atoms and the smaller spheres represent boron atoms.

From the unit cell shown above, determine the empirical formula of boron nitride. Show your working.

Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

in the enpression for the bortability pr	roduct constant, $K_{\rm sp.}$ for PbCl ₂
	Toduce constant, rksp, for 1 0012.
What [Cl ⁻] is needed to reduce the [Pb ²⁺ $K_{\rm sp}(\rm PbCl_2) = 1.6 \times 10^{-6}$	⁺] to the maximum safe level of 0.015 mg L^{-1} ?
	[Cl ⁻] =
The solubility of sodium chloride is 359 with lead(II) chloride, can sodium chloride	g L^{-1} . If a reservoir of 50,000 L is saturated ide be used to reduce the [Pb ²⁺] to a safe
level? If so, what mass of sodium chlor	ide (in kg) would be needed?
	Answer:

• Complete the following table where indicated.	le. Make sure you give the	name of the starting material	Marks 10
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
	dilute H ₂ SO ₄		
Name:			
НО		HO	
Br	N(CH ₃) ₃		
			-
ОН		ОН	
ОН	concentrated H ₂ SO ₄		
	H [⊕] / H ₂ O / heat		
	1. LiAlH ₄ 2. H [⊕] / H ₂ O		

Page Total:

1

•	The tropane alkaloid (–)-hyoscyamine is found in certain plants of the <i>Solanaceae</i> family. It is an anticholinergic agent that works by blocking the action of acetylcholine at parasympathetic sites in smooth muscle, secretory glands and the central nervous system.			
	NCH ₃			
	Give the molecular formula of (–)-hyoscyamine.	-		
	List the functional groups present in (–)-hyoscyamine.			
	Hydrolysis of (–)-hyoscyamine results in two fragments, tropine and tropic acid. Draw each of these fragments.			
	tropine tropic acid			
	What is the stereochemistry at the tropic acid stereocentre? Write (R) or (S) .			
	Is tropine optically active? Explain your answer.			

Page Total:

Marks • Show clearly the reagents you would use to carry out the following chemical 3 conversion. More than one step is required. Give the structure of any intermediate compounds formed. 0 C1 • Convert the following structure into a sawhorse projection. 3 CHO но—н H--OH ĊH₂OH D-threose What does the *D* in the name *D*-threose designate?

THIS PAGE IS FOR ROUGH WORKING ONLY

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm mol}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$0 ^{\circ}\text{C} = 273 \text{K}$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions			Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10^{-3}	milli	m	10^{3}	kilo	k	
10^{-6}	micro	μ	10^{6}	mega	Μ	
10^{-9}	nano	n	10 ⁹	giga	G	
10^{-12}	pico	р	10^{12}	tera	Т	

Standard Reduction Potentials, E°

Reaction	E° / V	
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82	
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72	
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51	
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50	
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36	
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23	(+0.82 at pH = 7)
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18	
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96	
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96	
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92	
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80	
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77	
$I_2(aq) + 2e^- \rightarrow 2I^-(aq)$	+0.62	
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53	
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34	
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32	
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15	
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by d	efinition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04	
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13	
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14	
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24	
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40	
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44	
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74	
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76	
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83	(-0.41 at pH = 7)
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89	
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68	
$\operatorname{Sc}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Sc}(s)$	-2.09	
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36	
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71	
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87	
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04	

Useful	formul	las
	<i>,</i>	

Thermodynamics & Equilibrium	Electrochemistry			
$\Delta U = q + w = q - p\Delta V$	$\Delta G^{\circ} = -nFE^{\circ}$			
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	Moles of $e^- = It/F$			
$\Delta G = \Delta G^{\circ} + RT \ln Q$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$			
$\Delta G^{\circ} = -RT \ln K$	$= E^{\circ} - (RT/nF) \times \ln Q$			
$\Delta_{\rm univ}S^\circ = R \ln K$	$E^{\circ} = (RT/nF) \times 2.303 \log K$			
$\ln \frac{K_2}{M} = \frac{-\Delta H^{\circ}}{(1 - \frac{1}{M})}$	$= (RT/nF) \times \ln K$			
$\frac{m}{K_1} = \frac{m}{R} \left(\frac{T_2}{T_2} - \frac{T_1}{T_1} \right)$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$			
Acids and Bases	Gas Laws			
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT			
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$			
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$			
Radioactivity	Kinetics			
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$			
$A = \lambda N$	$k = A e^{-Ea/RT}$			
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt$			
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$			
Mathematics	Quantum Chemistry			
$-b \pm \sqrt{b^2 - 4ac}$	$E = hv = hc/\lambda$			
If $ax + bx + c = 0$, then $x = \frac{2a}{2a}$	$\lambda = h/mv$			
$\ln x = 2.303 \log x$	$E = -Z^2 E_{\rm R}(1/n^2)$			
Area of circle = πr^2	$\Delta x \cdot \Delta(mv) \ge h/4\pi$			
Surface area of sphere = $4\pi r^2$	$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$			
Volume of sphere = $\frac{4}{3} \pi r^3$	$T\lambda = 2.898 \times 10^6 \text{ K nm}$			
Miscellaneous	Colligative Properties & Solutions			
$A = -\log \frac{I}{I}$	$\Pi = cRT$			
	$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$			
$A = \varepsilon c l$	c = kp			
$F = -4 \frac{e^2}{N}$	$\Delta T_{\rm f} = K_{\rm f} m$			
$L = 4\pi \frac{1}{4\pi\varepsilon_0 r} r_{\rm A}$	$\Delta T_{\rm b} = K_{\rm b} m$			

ACTINOIDS	LANTHANOID	132.91 87 FRANCIUM Fr [223.0]	55 Caesium CS	37 Rb 85.47	19 м К 39.10	11 зовним Na 22.99	1.000 3 LITHIUM LI 6.941	1 1 1 1 1 1 1 1 1 1 1 1 1	-
астичим Астичим [227.0]	57 s цахтнали 138.91	137.34 88 88 88 валили Ra [226.0]	56 5 Ba	38 STRONTIUM ST 87.62	20 салстим s Са 40.08	12 масиезиим Мg 24.31	4 Векуплим Ве 9.012	٢	د
		9-103	7-71	39 ¥ 88.91	21 самынм Sc 44.96			ن	2
90 Γ h 2.04	0.12	178.49 104 китнекроковии Rf [263]	72 нариом Нf	40 ZIRCONIUM 21.22	22 тналим Ті 47.88			4	2
91 Ра [231.0]	59 Ракорумим Рг 140.91	180.95 105 ривлим Db [268]	73 TANTALUM Ta	41 мовим Nb 92.91	23 ^{VANADIUM} V 50.94			U	η
92 цвалием U 238.03	корумим Nd 144.24	183.85 106 ^{SEABORGIUM} Sg [271]	74 TUNGSTEN	42 Molyberum Mo 95.94	24 снаомиим Ст 52.00			0	7
93 Neptunium Np [237.0]	61 ркометниим Рт [144.9]	186.2 107 волялим Вh [274]	75 RHENIUM	43 тесниетим Тс [98.91]	25 MANGANESE Mn 54.94			-	L
94 Рыломим Ри [239.1]	62 samarium Sm 150.4	190.2 108 илязним НS [270]	76 Os	44 RUTHENIUM 101.07	26 ^{IRON} Fe 55.85			a	ø
95 лменсіцм Ат [243.1]	63 ^{енворим} Е и 151.96	192.22 109 метиевиим Мt [278]	77 Івпріля	45 Rh 102.91	27 Со 58.93			Y	0
96 Ст [247.1	64 салосили Gd 157.2 5	195.09 110 лямятлятим в Ds [281]	78 PLATINUM Pt	46 РАЛ.Г.АВИМ РАД 106.4	28 Nickel Ni 58.69			10	10
E		<u>196.97</u> 111 оентсеним Rg [281]	79 Au	47 silver Ag 107.87	29 Cu 63.55			Ħ	1
вілим В к [7.1] [8.93	200.59 112 copernicium Cn [285]	80 NERCURY	48 Сармим 112.40	30 ^{zinc} Zn 65.39			12	15
98 Деоклим Сf 252.1]	66 ^{узреозим} Ду 62.50	204.37	81 THALLIUM	49 In 114.82	31 Gallium 69.72	13 л.шмілим АІ 26.98	5 вокол В 10.81	IJ	12
99 Einsteinium Es [252.1]	67 ногмим Но 164.93	207.2 114 Flerovium F1 [289]	82 Pb	50 ти Sn 118.69	32 Germanium Ge 72.59	14 silicon Si 28.09	6 саквох С 12.01	1 4	1
100 Fermium Fm [257.1]	68 еквим Е г 167.26	208.98	83 Візмитн	51 литимому Sb 121.75	33 ARSENIC AS 74.92	15 PHOSPHORUS P 30.97	7 NITROGEN N 14.01	5	17
101 меноеlevium Md [256.1]	69 типлим Тт 168.93	[210.0] 116 LIVERMORIUM LV [293]	84 Росолим	52 телликим Те 127.60	34 selenium Se 78.96	16 sulfur S 32.07	8 0 16.00	10	16
102 Nobelium No [259.1]	70 уттеквим Yb 173.04	[210.0]	ASTATINE	53 Iodeline I 126.90	35 вкоміле Вг 79.90	17 сніляляе СП 35.45	9 FLUORINE F 19.00		17
103 lawrencium Lr [260.1]	71 LUTETIUM Lu 174.97	[222.0]	86 Rn	54 xenon Xe 131.30	36 KRYPTON Kr 83.80	18 Arcon Ar 39.95	10 NEON NEON Ne 20.18	1003	10

PERIODIC TABLE OF THE ELEMENTS

2014, Semester 2

CHEM1002

(q)891000